/All/
|
index
catalog
recent
update
post
|
/math/
/tech/
/anime/
/misc/
/free/
/meta/
|
Guide
dark
mod
Log
P7332
Fri 2022-08-26 21:16:29
link
reply
32bace411ea6c55afe1622f8d427629158fc8646e4f5f103aa3c5f29cc09d498.png
828 KiB 1250x1000
Just noticed something interesting. Can you prove it or find a counterexample? Any interesting generalizations?
The Fibonacci numbers are given by
[tex:
F
_
0
= 0
]
[tex:
F
_
1
= 1
]
[tex:
F
_
{
n+2
}
= F
_
n
+ F
_
{
n+1
}
]
.
For even
[tex:
n
\ge
2
]
,
[tex:
\arctan
(1/F
_
n
) =
\arctan
(1/F
_
{
n+1
}
) +
\arctan
(1/F
_
{
n+2
}
)
]
.
P7391
Sat 2022-08-27 07:57:30
link
reply
[tex:
tan(a+b)=
\frac
{
tan(a)+ban(b)
}
{
1-tan(a)tan(b)
}
]
Thus, your formula would be correct if and only if
[tex:
\frac
{
1
}
{
F
_
n
}
=
\frac
{
\frac
{
1
}
{
F
_
{
n+1
}
}
+
\frac
{
1
}
{
F
_
{
n+2
}
}
}
{
1-
\frac
{
1
}
{
F
_
{
n+1
}
F
_
{
n+2
}
}
}
]
which can be simplified to
[tex:
P
_
n
=F
_
{
n+1
}
^
2
- F
_
{
n+1
}
F
_
n
-F
_
n
^
2
= 1
]
It seems that
[tex:
P
_
n
=1
]
for n even and
[tex:
P
_
n
=-1
]
for n odd.
As it turns out,
[tex:
P
_
{
n+1
}
= F
_
{
n+2
}
^
2
- F
_
{
n+2
}
F
_
{
n+1
}
- F
_
{
n+1
}
^
2
= F
_
n
^
2
+ F
_
{
n+1
}
F
_
n
- F
_
{
n+1
}
^
2
= -P
_
n
]
, so this is indeed true.
Referenced by:
P7427
P7427
Sat 2022-08-27 15:50:58
link
reply
P7391
Nice. I came across this while looking for ways to compute pi = 4 arctan(1) by repeatedly decomposing arctangents. We have
arctan(1/n) = arctan(1/a) + arctan(1/b)
if and only if
[tex:
(a-n)(b-n) = n
^
2
+ 1
]
,
so you can decompose arctan(1/n) into arctangents of smaller unit fractions by factoring
[tex:
n
^
2
+ 1
]
.
P7467
Sat 2022-08-27 19:43:03
link
reply
For odd n we get
[tex:
\arctan
(1/F
_
n
) =
\arctan
(1/F
_
{
n+1
}
) +
\arctan
(1/F
_
{
n+2
}
) -
\arctan
(1/G
_
{
n+1
}
)
]
where
[tex:
G
_
n
=
\frac
{
F
_
n
^
3
+ 3F
_
n
}
{
2
}
]
.
Referenced by:
P7520
P7520
Sun 2022-08-28 06:31:31
link
reply
P7467
which can be rewritten as
[tex:
\arctan
(1/F
_
n
) =
\arctan
(2/F
_
{
n+1
}
) -
\arctan
(1/F
_
{
n+1
}
) +
\arctan
(1/F
_
{
n+2
}
)
]
Mod Controls:
x
Reason: